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Abstract: Behavioral interventions including exercise, stress management, patient education,
psychotherapy and multidisciplinary neurorehabilitation in general are receiving increasing
recognition in multiple sclerosis (MS) clinical practice and research. Most scientific evaluations
of these approaches have focused on psychosocial outcome measures such as quality of life,
fatigue or depression. However, it is becoming increasingly clear that neuropsychiatric
symptoms of MS are at least partially mediated by biological processes such as inflammation,
neuroendocrine dysfunction or regional brain damage. Thus, successful treatment of these
symptoms with behavioral approaches could potentially also affect the underlying biology.
Rigidly designed scientific studies are needed to explore the potential of such interventions
to affect MS pathology and biological pathways linked to psychological and neuropsychiatric
symptoms of MS. Such studies need to carefully select outcome measures on the behavioral
level that are likely to be influenced by the specific intervention strategy and should include
biomarkers with evidence for an association with the outcome parameter in question. In this
overview, we illustrate how biological and psychological outcome parameters can be combined
to evaluate behavioral interventions. We focus on two areas of interest as potential targets
for behavioral interventions: depression and fatigue.
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Behavioral interventions in multiple
sclerosis
Multiple sclerosis (MS) is a demyelinating,

inflammatory disease of the central nervous

system (CNS) with a presumed autoimmune

origin. Neuropsychiatric symptoms including

anxiety, depression, fatigue, and cognitive distur-

bances are very common and have a major

impact on activity and participation in life.

Few drugs targeting neuropsychiatric symptoms

have been tested in MS and the trials conducted

have yielded disappointing results for fatigue

[Brown et al. 2010] or cognitive impairment

[Lovera et al. 2010; Christodoulou et al. 2008].

Behavioral interventions such as psychotherapy

[Thomas et al. 2006], neurorehabilitation [Khan

et al. 2007], and exercise [Motl et al. 2010] have

been shown to beneficially affect quality of life and

symptom domains including depression, fatigue,

and possibly cognitive function. In addition, emerg-

ing evidence suggests that techniques such as

meditation may be effective in decreasing depres-

sion and fatigue [Grossman et al. 2010].

While an increasing body of evidence supports the

efficacy of behavioral interventions as symptomatic

treatments in MS, little is known about potential

underlying mechanisms. As we discuss in this

review, symptoms such as depression and fatigue

have been shown not simply to be a psychological

reaction to the burden of a debilitating disease but

may be caused by certain biological aspects of MS

itself. If this is the case, behavioral interventions may

also have direct effects on the underlying biology.

To enhance our understanding of how behavioral

interventions work in MS, it is therefore essential

that clinical trials include biological measures.

Inclusion of biological outcome parameters is

most promising if there is already evidence that

the behavioral intervention has an effect on the

clinical outcome variable. When selecting a

potential biomarker for behavioral intervention
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trials in MS, it is important to choose a parame-

ter that meets several criteria:

a. The biomarker has to be linked to the clin-
ical outcome variable of interest, either
symptom-related (e.g. depression, fatigue,
cognitive impairment) or a measure of
disease activity (MRI activity, relapse, or dis-
ability progression).

b. The biological outcome parameter has to be
modifiable, and has to be modifiable in the
desired direction. For example, genetic mar-
kers might be useful as biomarkers of neuro-
psychiatric symptoms or as indicators of
treatment response but are not suitable as
outcomes.

c. The biomarker has to be reliably and objec-
tively measurable.

d. The duration of the study has to be suffi-
ciently long with an appropriate number of
assessments for the biological and clinical
outcome parameters to change. For exam-
ple, if the outcome parameters are highly
dynamic, such as markers of inflammation,
shorter interventions with more frequent
assessments may be most appropriate. For
markers of degenerative processes (such as
disability, cognitive function, and markers
of brain damage such as atrophy), longer
study periods will be required.

In the current review, we propose biological out-

come parameters for two highly relevant symp-

tom domains in MS: depression and fatigue.

Pathogenesis of MS-related depression
Patients with MS frequently suffer from depres-

sion. In this population, the point prevalence for

major depressive disorder (MDD) has been esti-

mated as between 13% and 30% with a lifetime

risk of up to 50% [Siegert and Abernethy, 2005].

Depression in MS is associated with cognitive

impairment [Heesen et al. 2010; Feinstein,

2006], negatively affects work performance

[Vickrey et al. 1995] and decreases quality of

life [Jonsson et al. 1996]. Importantly, depression

can decrease treatment compliance [Mohr et al.

1997] and is one of the strongest predictors of

suicide [Feinstein, 1997]. Despite the high clini-

cal relevance, depression remains underdiag-

nosed and undertreated in MS [Goldman, 2005].

Depression as a response to MS diagnosis
or therapy?
One obvious possibility is that the high rate of

depression may simply reflect a psychological

reaction to a chronic debilitating disease with

an unpredictable disease course. However,

depression in MS is not related to the severity

of neurological impairment [Moller et al. 1994],

and can occur at any stage of the disease [Sullivan

et al. 1995]. Early studies had suggested that

depression may be induced by disease-modifying

drugs such as interferon beta (IFNb). The occur-

rence of depression after IFNb therapy was later

found to be better explained by a previous history

of depression [Feinstein et al. 2002]. Therefore,

biological aspects of the disease itself may at least

in part be responsible for the high prevalence of

depression in MS.

Neurobiology of depression
Potential biological substrates of MS depression

remain poorly understood (see Pucak et al.

[2007] for a review). Lessons, however, may be

learned from clinical and preclinical studies of

idiopathic depression in psychiatry. It has

become clear that the classical ‘monoamine

hypothesis’ of depression is too simplistic and

current pathogenetic concept of depressive disor-

ders include a range of neurobiological mecha-

nisms (see Krishnan and Nestler [2008] for

a review). A large body of evidence has impli-

cated hypothalamic�pituitary�adrenal (HPA)

axis hyperactivity in depression [Pariante and

Lightman, 2008]. Preclinical models suggest

that stress and excess glucocorticoid levels

may cause cellular and molecular changes in the

CNS, possibly mediated by reduction of brain-

derived neurotrophic factor (BDNF) [Duman

and Monteggia, 2006]. These mechanisms

are thought to contribute to damage in suscep-

tible brain areas such as the hippocampus

[Macqueen and Frodl, 2011]. The hippocampus

plays a crucial role for learning, mood regulation

and HPA axis control, and hippocampal atrophy

is frequently observed in MDD [Koolschijn et al.

2009]. Additional biological substrates of depres-

sion may include inflammatory pathways

[Dantzer et al. 2008] or disturbed energy homeo-

stasis involving leptin and grehlin [Krishnan and

Nestler, 2010].

Neuroanatomical substrates of MS depression
Owing to the widespread CNS involvement in

MS, damage to brain regions involved in mood

regulation is a promising candidate for biological

correlates of MS-associated depression. Some

studies using magnetic resonance imaging (MRI)

have reported associations of MS depression

with lesion load in frontal, parietal, or temporal

areas [Feinstein et al. 2004; Zorzon et al. 2001;
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Bakshi et al. 2000a]. However, studies have

rarely implicated the same region and others

have failed to show an association altogether

[Zorzon et al. 2002]. More consistent correla-

tions have been found with regional atrophy, in

particular in the temporal lobe [Feinstein et al.

2004; Zorzon et al. 2002, 2001]. Using

advanced imaging techniques, Feinstein and col-

leagues have found that subtle white and gray

matter abnormalities in frontal and temporal

regions are linked to depression in MS

[Feinstein et al. 2010]. Together, these studies

suggest that brain areas, particularly in the tem-

poral lobe, may play an important role in

MS-related depression.

A neuroendocrine�limbic pathology of
MS-related depression?
Hyperactivity of the HPA axis [Pariante and

Lightman, 2008] and hippocampal atrophy

[Koolschijn et al. 2009] are among the most

consistently reported biological abnormalities in

idiopathic MDD. Interestingly, HPA axis hyper-

activity is detectable in up to 50% of MS patients

[Heesen et al. 2007] and gene variants involved in

HPA axis regulation have recently been associ-

ated with MS [Briggs et al. 2010]. HPA axis

hyperactivity in MS is associated with progressive

disease and global neurodegeneration [Gold et al.

2005; Heesen et al. 2002; Schumann et al. 2002;

Then Bergh et al. 1999]. One study recently

demonstrated that subtle increases in HPA axis

activity are already detectable in early disease

stages [Ysrraelit et al. 2008].

Significant associations between HPA axis activ-

ity and depressive symptoms have been reported

in relapsing�remitting (RR) MS patients during

relapse [Fassbender et al. 1998] but not in mixed

groups that included relapsing and progressive

patients [Then Bergh et al. 1999]. In RRMS

during remission, higher levels of depressive

symptoms (as defined by a cut-off on the Beck

Depression Inventory II [BDI-II]) are associated

with normal morning cortisol but elevated eve-

ning cortisol compared with age- and sex-

matched healthy controls, indicating insufficient

negative feedback during the circadian nadir

[Gold et al. 2010]. Recently, this has been con-

firmed in a sample of RRMS patients who met

diagnostic criteria for current MDD: normal

morning but elevated evening cortisol levels

were found in MS patients with comorbid

MDD compared to nondepressed MS patients

[Gold et al. 2011].

Hippocampal damage and loss of volume is

observable in MS patients [Dutta et al. 2011;

Benedict et al. 2009; Papadopoulos et al. 2009;

Sicotte et al. 2008; Geurts et al. 2007, 2006] as

well as its animal model, experimental autoim-

mune encephalomyelitis (EAE) [Ziehn et al.

2010; Sajad et al. 2009]. Supporting a neuroen-

docrine�limbic link of MS-associated depression,

smaller hippocampal volumes, particularly in the

cornu ammonis (CA) 2�3 and dentate gyrus

(DG) subfields, are associated with elevated

levels of depressive symptoms as well as increased

evening cortisol [Gold et al. 2010]. This is of par-

ticular interest because the CA2�3 fields are

most susceptible to damage by prolonged cortisol

treatment in primates [Sapolsky et al. 1990].

In rodents, high levels of endogenous glucocorti-

coids have effects localized to the CA3 region of

the hippocampus [Conrad, 2008] and chronic

stress has been shown to cause retraction of den-

drites in the CA3 and decrease neurogenesis in

the DG [McEwen, 1999]. These observations are

in line with reports from experimental models

and clinical studies of idiopathic MDD.

However, as will be discussed later, there are

also some intriguing differences in neuroendo-

crine�limbic correlates of idiopathic MDD and

MS depression.

Are neurobiological substrates of MS
depression modifiable?
There is ample evidence from psychiatric studies

that HPA axis abnormalities in MDD can be

modified by antidepressive therapy [Mason and

Pariante, 2006]. Similarly, a normalization of

HPA axis reactivity has been described in MS

patients treated with the antidepressant moclobe-

mide [Then Bergh et al. 2001]. Intriguingly, new

evidence suggests that in addition to normaliza-

tion of HPA axis responses, successful therapy of

depression may also be able to reverse volume

loss in brain areas such as the hippocampus.

Based on experimental data in rodents and pri-

mates, smaller hippocampal volumes in MDD

had long been thought to be mediated by neuro-

nal apoptosis [Sapolsky, 2000] or by decreasing

neurogenesis [Henn and Vollmayr, 2004].

However, postmortem studies failed to show sig-

nificant neuronal apoptosis in the hippocampus

of patients with MDD and the effect on neuro-

genesis is likely too small to account for the con-

siderable decreases in hippocampal volume

[Czeh and Lucassen, 2007]. Thus, it has recently

been proposed that hippocampal atrophy in

depression is mediated by potentially reversible
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mechanisms (e.g. reduced extracellular fluid con-

tent, cellular shrinkage, and dendritic retraction)

rather than neuronal apoptosis [Czeh and

Lucassen, 2007]. Interestingly, dendritic

remodeling is also likely to most strongly affect

the CA3 and DG since incoming fibers from the

entorhinal cortex to the dentate gyrus are rami-

fied several hundredfold between the dentate

gyrus and CA3 pyramidal neurons, making this

an area of particularly dense synaptic connections

[McEwen, 2003].

In line with this hypothesis, cross-sectional evi-

dence suggestive of normal volumes in the

CA23DG subregions of the hippocampus and

normal HPA axis functioning MS patients suc-

cessfully treated with selective serotonin reuptake

inhibitors (SSRIs) has been found [Gold et al.

2010].

Similar cross-sectional observations have been

reported for total hippocampal volume in psychi-

atric patients with MDD [Sheline et al. 2003].

Although this should be interpreted with caution,

it is consistent with some longitudinal data show-

ing that SSRI therapy could potentially reverse

hippocampal volume loss in posttraumatic stress

disorder (PTSD) [Vermetten et al. 2003].

However, two small longitudinal studies in

MDD showed inconsistent findings [Colla et al.

2007; Vythilingam et al. 2004]. In line with

reversibility of glucocorticoid (GC)-induced hip-

pocampal damage, increases in hippocampus

volume have been observed in Cushing’s patients

after surgical normalization of HPA axis activity

[Starkman et al. 2003, 1999].

Alternatively, certain subtypes of depression that

are not associated with hippocampal volume loss

may be more responsive to pharmacological ther-

apy, as has been shown for idiopathic MDD

[Macqueen and Frodl, 2011]. The possibility

to reverse hippocampal atrophy in depressed

subjects, both with idiopathic MDD as well as

MS-associated depression, should thus be inves-

tigated in adequately powered longitudinal

studies. In this regard, behavioral as well as phar-

macological strategies should be evaluated.

Is MS-associated depression neurobiologically
different from idiopathic MDD?
There is some indirect evidence that, although

HPA axis hyperactivity and hippocampal atrophy

have been reported in MS-related depression as

well as idiopathic MDD, the neurobiological

correlates of depressive symptoms may not be

identical.

Cortisol profiles in idiopathic MDD have been

demonstrated to be characterized by an elevated

morning, but normal evening cortisol concentra-

tion [Hinkelmann et al. 2009]. A meta-analysis of

20 studies examining salivary cortisol in MDD

and healthy controls showed larger group differ-

ences in the morning than in evening samples

[Knorr et al. 2010]. In a detailed assessment of

circadian cortisol over a 24-h period in a small

sample of well-characterized depressed inpa-

tients, the largest effect sizes with the highest spe-

cificity and sensitivity for MDD were found in

the morning between 10:00 and 12:00 [Paslakis

et al. 2010]. Conversely, depression in MS

patients is linked to elevated evening concentra-

tions, but normal morning cortisol secretion

[Gold et al. 2011, 2010].

The circadian peak levels of cortisol release are

mostly dependent on low-affinity glucocorticoid

receptors (GRs), while high-affinity mineralocor-

ticoid receptors (MRs) are most important for

the regulation of the circadian trough of cortisol

secretion. The differential alterations in cortisol

profiles may thus suggest that depression in MS

is associated with relative MR dysfunction but

normal GR function.

In contrast, we hypothesize that in psychiatric

patients with MDD, MR signaling is largely

intact while GR signaling is disturbed.

Decreased GR expression has been shown in

postmortem tissue from MDD patients in frontal

and temporal brain regions, although notably

not in the hippocampus [Webster et al. 2002].

In addition, functional tests of the HPA axis

in vivo and immune cells in vitro have indicated

GR dysfunction in MDD [Marques et al. 2009].

Some studies suggest intact or even enhanced

MR expression and signaling in this population

[Juruena et al. 2010, 2009, 2006; Wang et al.

2008; Young et al. 2003], although severe depres-

sion leading to suicide [Lopez et al. 1998] or

treatment-resistant depression [Juruena et al.

2009] may also be linked to MR dysfunction.

In idiopathic MDD, studies using hippocampal

surface mapping techniques have found evidence

for hippocampal volume loss mostly clustered in

the subiculum as well as the CA1 [Ballmaier et al.

2008; Posener et al. 2003]. In contrast, reduced

volumes in the CA2�3 and DG subfields in

Therapeutic Advances in Neurological Disorders 4 (4)

220 http://tan.sagepub.com



depressed RRMS patients have been reported

utilizing high-resolution manual tracings of ana-

tomically defined hippocampal subregions [Gold

et al. 2010]. Intriguingly, within the human hip-

pocampus, MR are highly expressed in the den-

tate gyrus and CA2-3 but at significantly lower

levels in CA1 [Seckl et al. 1991].

While this suggests distinct subregional hippo-

campal substrates and a selective dysfunction of

MR and GR in MS-associated and idiopathic

depression, this has not been tested directly.

If indeed biological substrates of MS depression

(see Box 1) differ from those of idiopathic MDD,

a different clinical phenotype of MS depression

may be expected. This has rarely been investi-

gated. However, it has been hypothesized that

MS depression tends to be characterized by per-

vasive mood changes, diurnal variation in mood,

and suicidal ideation among others [Rickards,

2005]. Depression is one of the strongest pre-

dictors of suicide in MS [Feinstein, 2002,

1997]. The suicide rate in MS may be as high

as 15% [Giannini et al. 2010], which appears to

be higher than in idiopathic MDD [Bostwick and

Pankratz, 2000]. Pharmacotherapy is moderately

effective in MS depression [Goldman, 2005] but

there are no comparative studies with treatment

response in idiopathic MDD. In general, depres-

sion in medical populations has lower treatment

response and remission rates compared with

patients without comorbidity [Otte, 2008].

Specific features of clinical phenotype in

MS-associated depression compared with idio-

pathic MDD have not been well studied and it

is unknown whether they correlate with the bio-

logical substrates.

Biology of MS-related fatigue
Both physical and mental fatigue are experienced

by up to two thirds of MS patients and are often

perceived as the most debilitating symptoms

[Stuke et al. 2009; Fisk et al. 1994]. Fatigue is

commonly being described as an overwhelming

feeling of exhaustion or weakness during exercise

and a complete lack of energy. Importantly, fati-

gue represents the leading cause for absence from

work [Smith and Arnett, 2005]. Symptoms of

fatigue seem to be strongly linked to a reduction

in the quality of life of those affected, indepen-

dent of physical disability [Chaudhuri and

Behan, 2004].

The pathological mechanisms responsible for the

high frequency in MS are still unknown. An early

study found no evidence that conduction block in

the patients’ central motor pathways was linked to

complaints of fatigue in MS [Sheean et al. 1997].

Sympathetic nervous system dysfunction
Autonomic dysfunction including cardiovascular

abnormalities is often seen in MS. It has been

hypothesized that dysregulation of the sympa-

thetic nervous system (SNS) might partially

account for development of fatigue in the sense

of an impairment of sympathetic vasomotor

activity [Flachenecker et al. 2003]. In another

study, autonomic dysregulation has been

observed to be associated with symptoms of fati-

gue only in a subgroup of MS patients

[Merkelbach et al. 2001]. The authors therefore

concluded that the autonomic cardiovascular

system was of minor relevance to MS fatigue.

Sympathovagal imbalance has been suggested to

play a role for the development of chronic fatigue

syndrome (CFS), an ill-defined condition pre-

sumably linked to impaired bodily clearance of

inflammatory stimuli. In MS, Egg and colleagues

were not able to find an association between fati-

gue and pupillary unrest, which is tightly linked

to wakefulness and the ascending arousal system

of the body [Egg et al. 2002]. Keselbrener and

colleagues found evidence for an impairment of

the sympathovagal balance response to standing

in patients with MS who experienced fatigue and

suggested premature reduction in vagal activity in

these patients [Keselbrener et al. 2000].

Structural brain damage or dysfunction
Early studies using MRI studies have failed to

find any consistent link between fatigue and

quantification of MS lesion load or localization

[Bakshi et al. 1999; Mainero et al. 1999; van

der Werf et al. 1998]. However, more recently,

lesion load in parietotemporal and frontal regions

was found to be correlated with fatigue [Sepulcre

et al. 2009]. A number of studies support a role

for structural damage of both gray and white

matter structures for fatigue [Pellicano et al.

2010; Penner and Calabrese, 2010; Sepulcre

et al. 2009; Tedeschi et al. 2007; Codella et al.

2002]. One longitudinal study could demonstrate

that fatigue may predict global atrophy progres-

sion [Marrie et al. 2005].

Functional imaging studies in MS fatigue have

supported the hypothesis of cortical reorganiza-

tion in MS fatigue, characterized by increased

A Fischer, C Heesen et al.
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ipsilateral and contralateral activation [Filippi

et al. 2002]. Studies using functional MRI

(fMRI) and positron emission tomography

(PET) have shown associations of fatigue with

altered cerebral activation patterns and glucose

metabolism indicating hypofunction in frontos-

triatal, motor areas, limbic structures, and the

basal ganglia [Tellez et al. 2008; Marrie et al.

2005; Filippi et al. 2002; Bakshi et al. 1999;

Roelcke et al. 1997].

Neuroendocrine abnormalities
Some studies in non-MS patients with CFS [Van

Houdenhove et al. 2009; Van Den Eede et al.

2007] suspected abnormalities in neuroendo-

crine systems such as the HPA axis to be linked

to the development of fatigue. In addition,

administration of pharmacological doses of corti-

sol has been found to ameliorate symptoms tran-

siently in CFS patients [Cleare et al. 1999]. Still,

there is no consistent evidence for a specific dys-

function of the HPA axis [Cleare, 2003] in CFS.

Consequently in the case of MS-related fatigue

involvement of the HPA axis has been hypothe-

sized and tested. Gottschalk and colleagues

reported MS patients with fatigue to exhibit

enhanced HPA axis activity, shown by signifi-

cantly increased adrenocorticotropic hormone

(ACTH) concentrations after administration of

dexamethasone [Gottschalk et al. 2005]. This

could however not be confirmed in a later study

using the combined dexamethasone�CRH sup-

pression test [Heesen et al. 2006]. Tellez and col-

leagues found no changes in circulating cortisol

levels comparing fatigued and nonfatigued MS

patients [Tellez et al. 2006]. This latter study,

however, revealed an interesting association

between fatigue and low serum levels of dehydro-

epiandrosterone (DHEA), a cortisol antagonist

with anti-inflammatory properties, and dehydro-

epiandrosterone sulfate (DHEAS). A small

study has also suggested a contribution of low

levels of melatonin in MS fatigue [Sandyk and

Awerbuch, 1994].

Cytokines
A large body of evidence from animal studies sug-

gests that cytokines, both endogenous and exog-

enous, can induce fatigue-like symptoms in

animals [Miller et al. 2009]. Here, cytokines

including interleukin (IL) 1a, IL-1b, IL-6,

tumor necrosis factor (TNF) a and IFNg are

involved in the induction of so-called ‘sickness

behavior’.

In line with this hypothesis, Flachenecker and

colleagues have provided evidence for a link

between increases in TNFa mRNA in immune

cells and MS fatigue [Flachenecker et al. 2004].

This association was later confirmed at the pro-

tein level by Heesen and colleagues who reported

higher TNFa and IFNg production in vitro by

MS patients suffering from fatigue [Heesen

et al. 2006]. In this study, TNFa production

was significantly correlated with daytime sleepi-

ness. More recently, higher frequency of IFNg
and TNFa producing CD8 T cells was shown

to correlate with measures of fatigue [Gold

et al. 2011].

It appears that these associations are specific to

peripheral cytokines rather than linked to inflam-

matory markers in general. For example, no asso-

ciation was found between MS fatigue and serum

C-reactive protein (CRP), soluble intercellular

adhesion molecule-1 (sICAM-1), and urinary

neopterin excretion [Giovannoni et al. 2001].

In addition, there exists no evidence that CNS

inflammation as measured by gadolinium

enhancing lesions is linked to fatigue [Marrie

et al. 2005].

The importance of dissecting fatigue from
depression
Fatigue and depression often co-occur in MS and

most studies report moderate correlations

between these symptoms [van der Werf et al.

2003; Voss et al. 2002; Bakshi et al. 2000b;

Ford et al. 1998; Schwartz et al. 1996]. This sug-

gests that while linked in MS, fatigue and depres-

sion may be mediated by at least partially

independent pathological mechanisms. Of note,

the association seems to differ between the differ-

ent components of fatigue, with depression being

more closely related to mental fatigue than phys-

ical fatigue [Ford et al. 1998].

Animal studies suggesting a role of cytokines for

sickness behavior [Raison et al. 2006] may have

relevance for both depression and fatigue in MS

and could explain the partial overlap.

‘Neuropsychiatric symptoms’ such as anorexia,

loss of body weight, reduced social exploration,

and decreased preference for sucrose solution

have been demonstrated in the animal model of

MS, EAE [Pollak et al. 2000], were associated

with inflammatory mediators including TNFa
and IL-1b [Pollak et al. 2003a], and responded

to anti-inflammatory medication [Pollak et al.

2003b]. One recent study suggests that in MS,
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HPA abnormalities are correlated with affective

symptoms of depression while INFg and TNFa
are more closely associated with measures of fati-

gue than with depression [Gold et al. 2011]. Low

levels of melatonin have been reported to be a

potential biomarker for MS depression [Akpinar

et al. 2008] as well as for MS fatigue [Sandyk and

Awerbuch, 1994]. Unfortunately, neither of these

studies explored differential association of fatigue

or depression with melatonin. Future studies

should aim to better differentiate between

depression (see Box 1) and fatigue (see Box 2),

both biologically as well as phenomenologically.

Behavioral interventions as putative disease-
modifying therapies in MS
As reviewed above, there is an increasing body of

evidence that depression and fatigue are linked to

biological substrates and that behavioral inter-

ventions can be effective in ameliorating the neu-

ropsychiatric symptoms. Some of these

substrates such as regional brain atrophy or mar-

kers of inflammation are also thought to be rele-

vant in MS pathogenesis or progression

[Sospedra and Martin, 2005]. Thus, behavioral

interventions might not only be relevant as symp-

tomatic treatments but could also represent puta-

tive disease-modifying therapies. However, to

date, there is very little direct evidence for this

possibility since behavioral intervention studies

have rarely obtained biological markers. One

small study showed that successful treatment of

MS depression (either pharmacologically or with

psychotherapy) can reduce IFNg production by

OKT3 or MBP-stimulated immune cells [Mohr

et al. 2001]. Two small trials showed a beneficial

effect of antidepressive pharmacotherapy on

enhancing lesions [Mostert et al. 2008] and pos-

sibly gray and white matter integrity [Sijens et al.

2008]. Since behavioral and pharmacological

therapies are comparably effective in MS depres-

sion, the effect of psychotherapy on lesion load

and atrophy should be explored in future studies.

A randomized controlled trial with 150 patients

using patient education showed a decreased

relapse rate in the intervention group [Kopke

et al. 2009]. However, no biological or paraclini-

cal markers of disease activity were obtained, so

this should be interpreted with caution.

A large body of evidence from preclinical and

clinical studies suggests that exercise may have

beneficial effects on cognition and possibly

underlying neuroanatomical substrates [Hillman

et al. 2008]. In line with this literature, one recent

cross-sectional study indicated that higher physi-

cal fitness levels in MS are associated with gray

matter volume and white matter integrity in MS

Box 2. Biological substrates of fatigue suitable as outcome measures.

� Inflammatory markers, peripheral rather than central. Most promising candidates are cytokines such as tumor necrosis factor
(TNF) a and interferon (IFN) g, which have been linked to fatigue in several chronic disorders including multiple sclerosis (MS),
cancer, and hepatitis and might thus represent a common pathway for fatigue symptomatology.
� Markers of brain activation associated with MS fatigue using functional magnet resonance imaging (fMRI) may be useful, particu-

larly in short term studies. However, the evidence of increased activation networks as a correlate of fatigue is not conclusive. While
in early stages there might be efficient compensatory coactivation (without fatigue), this may evolve into inefficient recruitment in
later stages (with fatigue) and finally loss of activation in advanced MS (with fatigue). Outcome measures including regional atrophy
in gray matter structures such as the basal ganglia [Pardini et al. 2010] may be promising if the intervention is long enough (>1 year)
to reasonably expect a change in these markers. More sensitive nonconventional MRI techniques such as diffusion tensor imaging of
white matter structures or spectroscopy may be able to detect changes in short-term trials.
� Markers of sympathetic function such as blood pressure responses or serum catecholamine levels to the isometric hand-grip (IHG)

exercise [Khurana and Setty, 1996] or to active change of posture [Flachenecker et al. 2001].

Box 1. Biological substrates of depression suitable as outcome measures.

� Markers of hypothalamic�pituitary�adrenal (HPA) axis activity, preferably circadian profiles over at least 2 days with at least three
assessments: awakening, midday (11:00�15:00), and evening (20:00�22:00). A low-dose oral dexamethasone suppression test may
provide a helpful functional estimate of HPA axis feedback regulation. In vivo and in vitro tests using selective agonists and antag-
onists of glucocorticoid receptor (GR) and mineralocortcoid receptor (MR) may help to better understand the molecular mechanisms
underlying HPA axis dysregulations in multiple sclerosis (MS) depression.
� MRI markers of brain areas involved in mood regulation and neuroendocrine control, most importantly the hippocampus and frontal

areas. It is advisable to use advanced imaging techniques such as diffusion tensor imaging [Feinstein et al. 2010] or high-resolution
volumetric analyses [Gold et al. 2010; Sicotte et al. 2008] since the reported brain abnormalities in MS depression are subtle and are
likely not detectable with conventional MRI.
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[Prakash et al. 2010]. Exercise has been shown to

partially prevent neuronal damage in EAE, the

animal model of MS [Rossi et al. 2009].

There is also some cross-sectional [Luders et al.

2009] as well as preliminary longitudinal evi-

dence [Holzel et al. 2008] that meditation may

positively affect hippocampal volumes in healthy

controls. Given the effect of meditation on

depression and fatigue in MS [Grossman et al.

2010] and the involvement of subregional hippo-

campal atrophy in MS depression [Gold et al.

2010] these studies are in line with the possibility

that meditation may affect regional atrophy

in MS.

In summary, there are indications for the poten-

tial of behavioral interventions to affect MS

pathology, but the few available trials have been

conducted in very small samples of subjects

and should be interpreted with caution.

Adequately powered longitudinal studies with

sensitive and pathologically relevant outcome

measures are largely lacking. However, we believe

that there is now sufficient indirect evidence

to start testing the effect of behavioral interven-

tions on disease-related endpoints such as

those used in drug trials. A number of prospec-

tive studies have consistently indicated that psy-

chological stress increases relapse risk in MS

[Mohr et al. 2004], so interventions targeted

at reducing stress may have the potential to

affect disease activity in MS. A large randomized

controlled study by Mohr and colleagues

[ClinicalTrials.gov identifier: NCT00147446]

using a stress management intervention has

recently been completed. The primary endpoints

in this study are enhancing lesions on MRI and

relapse rate and results are expected shortly. Only

rigidly designed trials like this will ultimately

tell if behavioral interventions can affect MS

pathology.

Conclusion
Despite the high clinical relevance of neuropsy-

chiatric MS symptoms, their pathogenetic sub-

strates are still poorly understood. This may in

part explain the disappointing results of clinical

trials for novel symptomatic drug therapies.

Thus, it is paramount to enhance our knowledge

of the underlying neurobiology of these symp-

toms. This is a prerequisite for designing new

therapies, both pharmacological as well as behav-

ioral, and essential for better monitoring their

effectiveness in clinical trials.

Some evidence suggests behavioral interventions

to affect biological pathways of neuropsychiatric

MS symptoms and possibly disease mechanisms

as well. These interventions thus may have ther-

apeutic potential, not only as a symptomatic

treatment but also as putative disease-modifying

therapies. However, few adequately powered and

well-designed studies have tested behavioral ther-

apies in MS and even fewer have included bio-

markers that could help to better understand the

mechanisms underlying the therapeutic benefits.

More translational and interdisciplinary research

in this area is urgently needed to expand the

treatment repertoire for patients, particularly

those in the progressive phase of the disease,

who currently have few therapeutic options but

may benefit from behavioral interventions.
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